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I. ABSTRACT

The ability to shop independently, especially in grocery
stores, is important for maintaining a high quality of life.
This can be particularly challenging for people with visual
impairments (PVI). Stores carry thousands of products, with
approximately 30,000 new products introduced each year in
the US market alone, presenting a challenge even for modern
computer vision solutions. In this work we present our work-
in-progress investigating technical solutions for enhancing
instrumented canes traditionally meant for navigation tasks
with capability within the domain of shopping. Our system
includes a novel visual product search algorithm designed
for use in the wild and a novel planner that autonomously
issues verbal commands to guide the user in a reaching task
to acquire them.

II. INTRODUCTION AND RELATED WORK

It is estimated that 295 million people have some form
of vision impairment, of whom 43.3 million are blind.
Currently, when encountering difficulty with shopping, they
can get help from sighted humans. Some PVI shoppers have
also indicated they are not willing to use store staffers for
shopping for items that require discretion such as medicine
and personal hygiene items [1], [2]. Our work seeks to
alleviate the dependence on guide availability and to mitigate
the loss of privacy encountered with traditional support
mechanisms. Our system extends the capability of a robotic
smart cane [3] created originally for social navigation as-
sistance (Fig.1). This area has been extensively researched
[4]–[26], yet many important capabilities are still rich for
exploration. It is practical and prudent to utilize the sensing
and compute power of these existing devices to address
multitude of critical tasks for a more independent lifestyle.
Recent work on grocery assistant systems focuses largely on
navigation inside the store [1], [2], [27]–[29], also known
as the locomotor space of the user. Solutions that rely on
environmental augmentation, such as the addition of RFID
tags and barcodes, introduce significant barriers to adoption
as they are inapplicable in uninstrumented domains. Some
researchers have focused on other issues around shopping,
including identifying products that users are running out of
and organizing newly purchased products at home [30], as
well as “the last few meters” way-finding problem [4] and
solutions for people with low vision [31]. We focus on an
unsolved research area that primarily considers the haptic

Fig. 1: Our system includes a robotic cane equipped with
RealSense D455 and T265 cameras. The system is powered
through a laptop in the backpack. Left: The system used as
a navigational device. It used audio and haptic feedback for
navigation guidance. Right: The system used as a manipula-
tion device. It uses audio for manipulation guidance.

space of the user. In other words, our solution addresses
1) the problem of locating a desired product and 2) the
challenge of providing effective verbal guidance to reach and
grasp the product.

Assistive manipulation guidance is an area that has been
explored within the robotics community for over a decade.
Vasques et al. [32] showed that saliency maps could be
used to find regions of interest (ROI) and directed users’
hand to the ROI. They found that their verbal commands’
efficacy suffered because they did not utilize a global frame
of reference. Bonani et al. [33] showed promise for the
concept with an experimenter-controlled teleoperated system
and Bigham et al. [34] did so with a mechanical turk-based
system, but fully autonomous implementations were outside
the scope of their contributions. The most popular solution
in this problem domain is a human-powered service called
Be My Eyes [35], but this service suffers from scalability
issues due to its reliance on available humans, is not read-
ily available in developing countries, and introduces nigh-
unavoidable privacy concerns. We present a novel verbal
guidance solution wherein we learn a mapping of language
commands to human hand movements, and use that to formu-
late the problem as a Markov Decision Process (MDP) that
can be solved with well established reinforcement learning
techniques to inform our guidance of the user.



III. CURRENT WORK

Our ongoing work can best be partitioned into sec-
tions regarding innovations in perception, solutions to the
data association problem for maintaining consistent product
detections over time, product identification and selection,
manipulation planning to reach the selected product, and
methods for conveying this manipulation plan to the human
user to complete the task.

1) Perception: We have developed a novel two-stage
product search system. This problem falls under the category
of instance retrieval, where the task is to find a target image
in the scene [36]. Existing techniques with a fixed number
of output classes perform poorly [37] on products because
of the sheer amount of products [38] available and the slight
variations they come in as it is infeasible to create an object
classifier and keep it up-to-date.

To use this system, we require that the user has only a
single image of the product that they want to find. This
image can be acquired in a number of ways, for example
by taking a picture the first time it is purchased or by
downloading an image from the internet. In the first stage,
our method proposes regions in form of bounding boxes that
are most likely to contain any product. We train the YoloV5
network on the SKU-110K dataset [39] to create a product
detector. In the second stage, an encoder is used as a feature
extractor that matches the features of the proposed regions
and the target image, finding the best possible match (Fig 2).
We do this by training an autoencoder on MS-COCO color
images [40] and then utilizing the encoder portion as the
feature extractor. This method doesn’t require any retraining
and works in real-time. The encoder transforms images (the
proposed regions and the target image) to vectors in a latent
space where we use cosine similarity to find closer vectors.
We empirically determine a similarity score threshold (0.5),
that captures satisfactory performance across real-world en-
vironments, but this value can easily be fine-tuned in case
there is significant distribution shift between the evaluation
and deployment environments. To transform the information
from the camera frame to a fixed global frame, we use
pose information obtained by a cane-mounted RealSense
T265 (which has minimal drift in indoor settings) running an
onboard Simulataneous Localization and Mapping (SLAM)
algorithm and fuse it with the depth information obtained
from a cane-mounted RealSense D455. We use a Gaussian
Mixture Model (GMM) to refine detections and distinguish
between the foreground and background depth information as
the bounding boxes can contain significant background pixels
in case a product and its bounding box are not overlapping
significantly.

2) Data Association: We use data association techniques to
identify each instance of the same product uniquely across
subsequent frames of camera capture. This is particularly
challenging because similar products exist in groups. We
do this by defining each product instance as a multivariate
Gaussian defined by the tuple p = {xg, yg, zg, w, h} where
xg, yg, zg is the 3D pose of the product in a global frame

Fig. 2: Our product search algorithm can reliably locate
desired products in the wild. Regions with a high likelihood
of containing any products are proposed in the first stage.
The features of these regions are then compared against the
target product image. Our data association solution is used
to identify whether detections from incoming camera frames
are new or re-detections of existing products. The product
classification aspect of this work has been tested and vali-
dated in actual grocery stores, whereas the data association
and manipulation assistance components are currently being
validated within a lab-based study.

and w, h are width and height in meters. Accounting for
the width and the height helps us discard some incorrect
matches, as incorrectly proposed regions with our method
not only have to have similar features but also similar shape
to be incorrectly labeled (Fig. 2 - lower left). The IMU data
from the T265 sensor helps us to calculate the object’s pose
in a global frame of reference. This is necessary for data
association and it also helps in creating a “map” of the
product location. This way we can align the verbal directional
commands with respect to the current hand pose and avoid
the drawback of formulating verbal commands generated
with targets located only in the camera frame of view,
which is sensitive to hand movements [32]. Product instance
information is updated using a rolling mean over associated
detections. We also employ a lazy deletion strategy to delete
instances that have not been seen a sufficient number of times
(sparse detections) or recently (old detections).

3) Scoring: Our system then scores each detected product
instance of the target product and picks the one with the
highest score as its planning goal. It considers the rolling
similarity with the target image and the spatial information.
This allows the system to exercise some important informa-
tion that is absent without an explicit physics model, namely
selecting an instance from the top level of stacked items to
minimize the risk of toppling (Fig 3).

4) Planning: We have developed two different guidance
mechanisms to provide verbal instruction once the target
has been located (continuous versus discrete guidance), for



Fig. 3: The spatial scoring system clusters all the found
instances spatially and gives preference to the closest cluster
to the current hand pose. Ties are broken arbitrarily.

example, “keep on going right”...“stop” or “move 6 inches to
the right”. The continuous guidance operates by calculating
the relative position of the target and the device (Fig. 1),
providing continuous cues along each individual axis of
movement until the next is aligned.

The decision to create a discrete guidance mode was
inspired by study results showing that PVI have been known
to perceive length units even better than sighted people [41]
and the criteria of minimizing verbal feedback for the task.
To develop the discrete guidance method, we collected a
dataset mapping verbal movement commands from a fixed
command-set, recording participants’ net hand movements
upon reacting to that command (Fig 4). We formed 36
discrete commands and issued 1220 instances of the com-
mands in total to 25 volunteers (50 commands per person)
while they were blindfolded. The hand movement data were
recorded using an OptiTrack motion capture system. Figure
4 shows a sample from this dataset illustrating commands
pertaining to left movement. We fitted Gaussians to charac-
terize the movement caused by each command as

Xc ∼ N (µc, σ
2
c )

where µc and σc are the mean and standard deviation of the
movement caused by command c.

This information is used to formulate this problem as
an MDP (S,A, T,R) where S is the set of states in the
MDP, A is the set of actions, T is a stochastic transition
function describing the action-based state transition dynam-
ics of the model, and R is a reward function. S is the
tuple (∆x,∆y,∆z, axis) where the first three terms are the
difference in distance of the target and the hand pose, and
axis defines the axis of the previous command which could
be any of six values corresponding to the X, Y, or Z axis and
a direction {left, right, up, down, forward, backward}. This
formulation is dependent on the relative distance between
the target and the hand and thus it can solve for all the
potential states that can be encountered. We discretized the
states at 10 cm resolution and considered a cuboid region
of 1.5m as the operational space for the human hand. A
is the set of discrete verbal commands. T is calculated

Fig. 4: From left to right: A sample of discrete commands.
The movement (in meters) each command caused. We
learned a model of human hand movement from demonstra-
tions that gave us the transition probabilities T. S defines the
state space, A defines the discrete set of verbal actions, and
R is the reward function. A policy is learned offline that can
be used across reaching tasks.

Fig. 5: An experimental setup approximating a grocery
store shelf, used for evaluating the efficacy of our proposed
manipulation guidance system.

from Xc as the movement caused by each command is not
deterministic. The reward function R encourages reaching
the target and discourages issuing superfluous commands.
It also discourages a sequence of commands that could be
illegible or frustrating by penalizing axis changes. The MDP
is then solved using value iteration to generate a general
reaching policy that can be queried online to guide the user
toward arbitrary target locations.

5) Conveyance: The commands to convey to the user
(actions) are computed online when using the continuous
guidance mode and queried online from the policy learned
in the discrete guidance mode. Based on the relative position
of the target and the hand, a command is formulated (or



retrieved from the policy) and issued aloud from a speaker
that is part of the robotic cane system. In an effort to reduce
frustration, the system issues new commands only when the
user’s hand has slowed down sufficiently to show that they
are ready for the next command. The user is asked to grasp
the target object with their non-occupied hand if they are
close to it with the system.
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